- 有穷状态集States
- 输入字符集Input symbols
- 转移函数Transitions
- 起始状态Start state
- 接受状态Accepting state(s)
NFA
DFA
在 中,Friedl首先分析了NFA和DFA的区别,DFA比较快,但不提供Backtrack(回溯)功能,NFA比较慢,但提供了Backtrack功能。 在分析两种引擎的匹配过程时,Friedl指出,NFA是基于表达式的(Regex-Directed),而DFA是基于文本的(Text-Directed)。 举例来说,对于正则表达式 to(nite|knight|night),NFA在匹配最开始两个字符(to)之后,剩下的三个组件(component)是 nite, knight 和 night,于是正则引擎会依次尝试这三个选择分支(每次尝试一个);而DFA在匹配最开始两个字符之后,会将剩下的三个选择拆分作字符,并行尝试,也就是说,匹配 to 之后,先匹配 k 或者 n ,如果 k 不能匹配,则放弃 knigth 所在的分支,再匹配 i ,再匹配 t 或 g ……这样继续下去,直到匹配结束。 不幸的是,Friedl对匹配过程的分析,是完全错误的——引擎的不同,是指构建的自动机的不同,而不是匹配算法的不同! DFA 引擎在任意时刻必定处于某个确定的状态,而NFA引擎可能处于一组状态之中的任何一个,所以,NFA引擎必须记录所有的可能路径(trace multiple possible routes through the NFA),NFA之所以能够提供Backtrack的功能,原因就在这里。 传统的NFA匹配算法是带回溯的深度优先搜索(backtracking depth-first search,就是上文所说的Regex-Based过程),而新的PCRE算法提供了效率更高的广度优先搜索,可以同时保持所有可能的NFA状态(请参考 ,尤其是Lecture Notes的section 2.2)。 Friedl的错误就在这里,他混淆了应用PCRE算法的NFA与DFA的匹配过程。 需要指出的是,即使应用PCRE算法,NFA的速度仍然低于DFA,这是由NFA需要同时保存多种可能的性质决定的。从理论上说,如果我们不需要应用 Backtrack,完全可以从NFA构造出等价的DFA,再进行匹配,这样能大大提高速度——代价是,DFA需要更多的空间。